
1.  Introduction
Global atmospheric CO2 concentrations have increased from 320 ppm in the 1960s to a present-day value of 
410 ppm due to anthropogenic activities (Keeling & Keeling, 2017). This increase has resulted in significant 
warming in the atmosphere and the global ocean (Hartmann et al., 2013; Johnson & Lyman, 2020), and 
significant reductions in open ocean pH and aragonite saturation state (ΩAR) at mean rates of −0.02 pH 
units decade−1 and 0.08 decade−1, respectively, over the past three decades (Doney et al., 2009; Takahashi 
et al., 2014). These changes, along with other human-driven environmental alterations, will likely impact 
marine ecosystem services, such as fisheries and aquaculture (Doney, et al., 2020).

Abstract  Understanding decadal changes in the coastal carbonate system is essential for predicting 
how the health of these waters responds to anthropogenic drivers, such as changing atmospheric 
conditions and riverine inputs. However, studies that quantify the relative impacts of these drivers are 
lacking. In this study, the primary drivers of decadal trends in the surface carbonate system, and the 
spatiotemporal variability in these trends, are identified for a large coastal plain estuary: the Chesapeake 
Bay. Experiments using a coupled three-dimensional hydrodynamic-biogeochemical model highlight that, 
over the past three decades, the changes in the surface carbonate system of Chesapeake Bay have strong 
seasonal and spatial variability. The greatest surface pH and aragonite saturation state (ΩAR) reductions 
have occurred in the summer in the middle (mesohaline) Bay: −0.24 and −0.9 per 30 years, respectively, 
with increases in atmospheric CO2 and reductions in nitrate loading both being primary drivers. 
Reductions in nitrate loading have a strong seasonal influence on the carbonate system, with the most 
pronounced decadal decreases in pH and ΩAR occurring during the summer when primary production is 
strongly dependent on nutrient availability. Increases in riverine total alkalinity and dissolved inorganic 
carbon have raised surface pH in the upper oligohaline Bay, while other drivers such as atmospheric 
warming and input of acidified ocean water through the Bay mouth have had comparatively minor 
impacts on the estuarine carbonate system. This work has significant implications for estuarine ecosystem 
services, which are typically most sensitive to surface acidification in the spring and summer seasons.

Plain Language Summary  Seawater pH, a measure of how acidic or basic water is, is a 
crucial water quality parameter influencing the growth and health of marine organisms, such as oysters, 
fishes and crabs. Decreasing pH, commonly referred to as acidification, is a severe environmental issue 
that has been exacerbated by human activities since the industrial revolution. In the open ocean, elevated 
atmospheric carbon dioxide is the key driver of acidification. However, in coastal environments the drivers 
are particularly complex due to changing human influences on land. In this study the primary drivers 
of acidification in the Chesapeake Bay over the past three decades are identified via the application of a 
three-dimensional ecosystem model. Increased atmospheric CO2 concentrations and decreased terrestrial 
nutrient inputs are two primary drivers causing nearly equal reductions in pH in surface waters of the 
Bay. The pH reductions resulting from decreased nutrient loads indicate that the system is reverting back 
to more natural conditions when human-induced nutrient inputs to the Bay were lower. As nutrient 
reduction efforts to improve coastal water quality continue in the future, controlling the emissions of 
anthropogenic CO2 globally becomes increasingly important for the shellfish industry and the ecosystem 
services it provides.

DA ET AL.

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided 
the original work is properly cited, 
the use is non-commercial and no 
modifications or adaptations are made.

Mechanisms Driving Decadal Changes in the Carbonate 
System of a Coastal Plain Estuary
Fei Da1 , Marjorie A. M. Friedrichs1 , Pierre St-Laurent1 , 
Elizabeth H. Shadwick2 , Raymond G. Najjar3 , and Kyle E. Hinson1 

1Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA, 2CSIRO Oceans and Atmosphere, 
Hobart, TAS, Australia, 3Department of Meteorology and Atmospheric Science, The Pennsylvania State University, 
University Park, PA, USA

Key Points:
•	 �Decadal changes in estuarine surface 

pH and aragonite saturation state 
(ΩAR) exhibit large spatial and 
seasonal variability

•	 �In the upper Chesapeake Bay, 
changes in riverine alkalinity and 
dissolved inorganic carbon have 
increased surface pH in fall and 
spring

•	 �In the mid- and lower Bay, higher 
atmospheric CO2 and reduced 
nutrient loading have (nearly 
equally) reduced surface pH and ΩAR 
in summer

Supporting Information:
Supporting Information may be found 
in the online version of this article.

Correspondence to:
F. Da,
fda@vims.edu

Citation:
Da, F., Friedrichs, M. A. M., St-Laurent, 
P., Shadwick, E. H., Najjar, R. G., & 
Hinson, K. E. (2021). Mechanisms 
driving decadal changes in the 
carbonate system of a coastal plain 
estuary. Journal of Geophysical 
Research: Oceans, 126, e2021JC017239. 
https://doi.org/10.1029/2021JC017239

Received 31 JAN 2021
Accepted 3 JUN 2021

10.1029/2021JC017239
RESEARCH ARTICLE

1 of 23

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-5330-5962
https://orcid.org/0000-0003-2828-7595
https://orcid.org/0000-0002-1700-9509
https://orcid.org/0000-0003-4008-3333
https://orcid.org/0000-0002-2960-5965
https://orcid.org/0000-0002-2737-2379
https://doi.org/10.1029/2021JC017239
https://doi.org/10.1029/2021JC017239
https://doi.org/10.1029/2021JC017239
https://doi.org/10.1029/2021JC017239


Journal of Geophysical Research: Oceans

In coastal ecosystems, local changes in nutrient inputs from the watershed 
have crucial impacts on the carbonate system and can alter pH and ΩAR 
via production and consumption of total alkalinity (TA) and dissolved in-
organic carbon (DIC). Specifically, enhanced algal growth from increased 
nitrogen loads (e.g., eutrophication) provides excess organic material for 
aerobic decomposition, particularly in warmer seasons, which lowers the 
pH and ΩAR in subsurface and/or downstream coastal waters (Borges & 
Gypens, 2010; Cai et al., 2011; Cai, Feely, et al., 2020; Feely et al., 2010; 
Rheuban et al., 2019; Sunda & Cai, 2012; Zhao et al., 2020). Furthermore, 
recent human activities (e.g., reduced mining and more agricultural usage 
of lime) have been found to increase riverine TA fluxes in some large riv-
ers in the United States (US) (Kaushal et al., 2013; Raymond & Oh, 2009; 
Stets et al., 2014), which potentially may offset some of the pH and ΩAR 
reductions due to increased atmospheric CO2 and eutrophication.

Previous studies have focused on the physiological stress that the re-
duction of pH in coastal waters (defined here as “coastal acidification”) 
causes for marine calcifying organisms. Low pH and low ΩAR can affect 
physiological processes of bivalves, including respiration rate, hatch-
ing success, shell growth, and feeding (Waldbusser & Salisbury,  2014; 
Waldbusser et al.,  2015). The coastal shellfish industry is at considera-
ble risk from increasing impacts of these reductions in pH and ΩAR (Ek-
strom et al., 2015), as well as other stressors, including hypoxia (Gobler 
et al., 2014; Gobler & Baumann, 2016; Tomasetti & Gobler, 2020); thus, 
for future coastal conservation and management efforts, it is crucial to 
further our understanding of the roles anthropogenic drivers play in 
causing long-term changes in the carbonate system.

The Chesapeake Bay, a large and productive coastal plain estuary in the 
US (Figure 1), has a shellfish industry that has been impacted over the 
past century by local watershed inputs related to various anthropogenic 
activities. In the 1960s and 1970s, nutrient loading to the Chesapeake Bay 
increased rapidly due to the expansion of industry and urbanization, as 
well as increases in agricultural usage of fertilizer (Yang et al., 2015; Pan 
et al., 2021), resulting in excess algal blooms, eutrophication, and severe 

summer hypoxia (Hagy et al., 2004; Nixon, 1995; Seliger et al., 1985). More recently, nutrient management 
efforts aiming to control hypoxia have led to reductions in nitrate (NO3

−) and organic nitrogen inputs to 
the Chesapeake Bay (Harding et al., 2016; Moyer & Blomquist, 2020; Zhang et al., 2015). Continuous man-
agement actions required by Chesapeake Bay Total Maximum Daily Load (TMDL; USEPA, 2010) regula-
tions are expected to further reduce nutrient inputs (Irby & Friedrichs, 2019). In addition, TA increases in 
rivers draining the Chesapeake Bay watershed have resulted from decreased acid mine drainage (Kaushal 
et al, 2013; Raymond & Oh, 2009; Stets et al., 2014). DIC concentrations have increased as well, due not 
only to decreased acid mine drainage, but also agricultural liming, concrete weathering and acid deposition 
(Raymond & Hamilton, 2018). The relative ratio between the increase in riverine TA and DIC has likely 
impacted the net carbonate buffering capacity of tributaries in the Chesapeake Bay watershed.

While several recent studies have focused on the spatial and seasonal variability of the Chesapeake Bay 
carbonate system (Brodeur et  al.,  2019; Chen et  al.,  2020; Friedman et  al.,  2020; Shadwick, Friedrichs, 
et  al.,  2019; Shen et  al.,  2019), research on long-term change is relatively rare. Waldbusser et  al.  (2011) 
conducted linear regressions of glass electrode pH data (1985–2008). Although they found significant de-
creasing trends in surface pH in the lower Bay, the changes in pH sampling methodology prior/after 1996 
(Herrmann et al., 2020) likely bias the trends calculated using these data. Herrmann et al. (2020) excluded 
these early pH data in the Chesapeake Bay and analyzed the spatiotemporal patterns of the calculated CO2 
partial pressure (pCO2) and air-water CO2 exchange over the years 1998–2018. The Bay was found to be a 
weak source of CO2 to the atmosphere, with more outgassing during the early part of the record, perhaps in 
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Figure 1.  The horizontal grid and bathymetry of ChesROMS-ECB. 
Symbols denote stations with recent carbonate system data (Friedman 
et al., 2020), Continuous Monitoring (CONMON) data, and nearby Water 
Quality Monitoring Program (WQMP) stations used for comparison in 
Table 3. From north to south, WQMP stations include CB3.3 W, CB4.3 C, 
LE2.2 and WE4.3; CONMON stations include Sandy Point South Beach, 
Gooses Reef, St. Georges Creek, and Goodwin Islands. Fluxes from the 
watershed are aggregated into 10 points (orange triangles) corresponding 
to the location of the largest rivers.
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response to lower streamflow and greater net heterotrophy during that time. Najjar et al. (2020) identified 
TA increases over many decades in tidal tributaries of the Chesapeake Bay, including the upper main stem 
Bay, which reflected a combination of increasing riverine TA and, in the Potomac River Estuary, a declining 
TA sink.

Several recent modeling studies have also advanced our current understanding of long-term changes in the 
Chesapeake Bay carbonate system. St-Laurent et al. (2020) showed that local changes in nitrogen loading 
and global changes in atmospheric CO2 have been the two primary drivers of change in the Chesapeake 
Bay inorganic carbon budget over the past century. Specifically, both drivers brought the Bay closer to be-
ing a net sink of atmospheric CO2 by roughly the same amount (∼30 Gg C y−1). Using a similar coupled 
biogeochemical-circulation model, Shen et al. (2020) examined spring and summer changes over the past 
30 years and found that increased atmospheric CO2 and nutrient loading played key roles in impacting 
Chesapeake Bay surface pH and ΩAR. Shen et al. (2020) also found that alkalinization of the Susquehanna 
River has simultaneously increased pH in the upper Bay. Although these earlier studies form a solid basis 
for a general understanding of long-term change in the Bay, they do not focus on how these changes vary 
seasonally. Given that the Bay is warming three to four times faster in the warmer months of the year com-
pared to the cooler months (Hinson et al., 2021), it is possible that long-term trends in the carbonate system 
are also undergoing more significant trends in the summer season. In addition, several other drivers need 
to be explicitly evaluated to delineate the impacts of various physical and biogeochemical processes on the 
carbonate system. For example, impacts of drivers such as increasing downward long-wave radiation (Hin-
son et al., 2021), increasing DIC concentrations along the Mid-Atlantic Bight (MAB; Xu et al., 2020) and 
decreasing organic nutrient inputs have not previously been examined.

To address this knowledge gap, this study combines water quality data and numerical model simulations to 
assess the relative impacts of both global- and local-scale drivers on the mainstem Chesapeake Bay surface 
carbonate system over the past three decades. The impacts of each individual driver, and all six drivers 
combined, are analyzed over the complete seasonal cycle. Given that most calcifying organisms reside in 
shallow shoals and tributaries where water tends to be more well-mixed, this study focuses on the decadal 
changes in Chesapeake Bay surface waters. Datasets and numerical modeling tools are described in Sec-
tion 2. In Section 3 the results of the long-term data analyses and model sensitivity experiments are pre-
sented. Relative seasonal and spatial impacts of these drivers on the Bay carbonate system are discussed in 
Section 4, and implications of this work are summarized in Section 5.

2.  Methods
2.1.  Carbonate System Data in the Chesapeake Bay

A plethora of long-term water quality cruise data, as well as high-frequency buoy data and short-term car-
bonate system data from shipboard sampling are available throughout the Chesapeake Bay. The Chesapeake 
Bay Water Quality Monitoring Program (WQMP) has been thoroughly monitoring physical and biogeo-
chemical fields at more than 100 Chesapeake Bay stations since 1984 (Chesapeake Bay Program, 2012; Ol-
son et al., 2012). Glass electrode pH is generally measured once each month from October to March, and 
twice each month from April to September at these stations. This study restricts data analysis to 1996–2018 
because quality control of the WQMP pH data revealed unrealistically high pH in Virginia stations prior to 
1996 (Herrmann et al., 2020). Additionally, high frequency (15-min interval) electrode pH data are available 
since the mid-2000s at four Continuous Monitoring (CONMON; CBNERR-VA VIMS, 2020) stations in close 
proximity to WQMP mainstem stations (Figure 1). The electrode pH measurements from both datasets have 
a precision of ±0.2 pH units or better.

Discrete samples for measurements of DIC and TA were collected at 18 main stem stations (Figure 1) on 
14 WQMP cruises between June 2016 and June 2018 (Friedman et al., 2020; Shadwick, De Meo, & Fried-
man, 2019). Samples were collected in borosilicate bottles one meter below the surface and one meter above 
the bottom, as well as at two intermediate depths above and below the pycnocline. In total, 552 pairs of DIC 
and TA measurements were made, along with corresponding measurements of temperature, salinity, and 
oxygen. Sample analyses followed procedures as described in Dickson et al. (2007), with an accuracy on the 
order of ±2 and ± 3 μmol kg−1 for DIC and TA measurements, respectively. Following analysis, pH, pCO2 
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and ΩAR were computed in CO2SYS (van Heuven et al., 2011) using the equilibrium constants of Cai and 
Wang (1998), which have been found to be more appropriate for low-salinity estuarine waters (Dinauer & 
Mucci, 2017; Herrmann et al., 2020).

2.2.  Estuarine Carbon Biogeochemistry Model: ChesROMS-ECB

This study used a coupled three-dimensional hydrodynamic-carbon-biogeochemistry model (Ches-
ROMS-ECB) to quantify the relative impacts of multiple global and local drivers on the Chesapeake Bay 
carbonate system. The ChesROMS-ECB model uses physical components from version 3.6 of the Rutgers 
branch of the Regional Ocean Modeling System (ROMS, Shchepetkin & McWilliams, 2005). The resolution 
of the horizontal orthogonal curvilinear grid (Xu et al., 2012) ranges from 430 m to ∼2 km inside the Ches-
apeake Bay, with lower resolution (up to ∼10 km) along the southern end of the open boundary in the MAB 
(Figure 1). The model, which includes 20 stretched terrain-following vertical levels, has been evaluated ex-
tensively with physical and biogeochemical observations in previous studies pertaining to Chesapeake Bay 
oxygen, nitrogen and carbon dynamics (Da et al., 2018; Feng et al., 2015; Irby et al., 2018; Kim et al., 2020; 
Moriarty et al., 2021; St-Laurent et al., 2020; Turner et al., 2021).

The primary focus of this work is the carbon module, which is based on the implementation of St-Laurent 
et al. (2020; see that paper's supplementary material for the full equations). The carbon module consists of 
the following inorganic and organic state variables: DIC, TA, small and large detritus of carbon, and both 
semilabile and refractory dissolved organic carbon. Phytoplankton and zooplankton carbon is assumed to 
be equivalent to their nitrogen counterparts in a constant Redfield ratio. Compared to the previous model 
implementation (St-Laurent et al., 2020), this version of ChesROMS-ECB accounts for the total impact of 
NH4

+ and NO3
− on TA by linking all related sink and source terms following Wolf-Gladrow et al. (2007), 

their Section 5.3; corresponding to organic matter remineralization, phytoplankton and zooplankton me-
tabolism, nitrification, denitrification and sediment flux in ChesROMS-ECB). The carbon module calcu-
lates pCO2 from modeled DIC, TA, temperature and salinity using carbonic acid equilibrium constants 
of Cai and Wang (1998). These constants are also used to compute pH and ΩAR diagnostically from the 
modeled variables using CO2SYS. In addition, our gas transfer velocity parameterization is updated from 
Wanninkhof (1992) to Wanninkhof (2014), which gives a slightly smaller gas transfer velocity.

There are several assumptions made in the model regarding the carbonate system. First, biological terms 
have no limitations that depend on pH or pCO2. Secondly, due to the lack of observations required for de-
veloping model parameterizations suitable for the time and space scales analyzed here, the biogeochemical 
module does not include calcium carbonate cycling. Finally, Herrmann et al (2020) estimated that organic 
alkalinity concentration in the Chesapeake Bay has a mean of 20 meq m−3 and standard deviation of 30 
meq m−3, which are both much smaller than typical TA concentrations throughout the main stem Bay (600–
2,200 meq m−3; Najjar et al., 2020). Therefore, organic alkalinity is assumed to be insignificant in this study.

2.3.  Model Forcing

Atmospheric forcing for ChesROMS-ECB is derived from ERA5 (Copernicus Climate Change Service, 2017), 
an atmospheric reanalysis product providing global atmospheric conditions from 1979 to the present. 
Three-hourly surface atmospheric fields with a horizontal resolution of 0.25° (winds, downward long-wave 
radiation, net short-wave radiation, precipitation, dewpoint temperature, air temperature and pressure) are 
obtained from ERA5 and interpolated to a 0.2° grid to create atmospheric forcing files for ChesROMS-ECB 
between 1979 and 2019. The ERA5 forcing was found to better represent interannual atmospheric tempera-
ture variability and long-term trends in the Chesapeake Bay region (Hinson et al., 2021) compared to earlier 
studies (Feng et al., 2015) using the North American Regional Reanalysis (Mesinger et al., 2006).

The riverine nitrogen, carbon and sediment loadings used in this study are derived from the Phase 6 Ches-
apeake Bay Watershed Model (CBPWM; Chesapeake Bay Program, 2017) and United States Geological Sur-
vey (USGS) data. For the period 1985–2014, daily estimates of freshwater discharge, temperature, NO3

−, 
NH4

+, organic nitrogen and sediment concentrations from the CBPWM are used as river inputs for Ches-
ROMS-ECB. For the most recent years when CBPWM results are unavailable (2015–2019), climatologi-
cal CBPWM sediment and organic nitrogen concentrations and USGS WRTDS (Weighted Regression on 
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Time, Discharge, and Season) NO3
− concentrations (Moyer & Blomquist, 2020) are combined with USGS 

discharge (Bever et al., 2021). Riverine organic carbon concentrations are derived from the CBPWM organ-
ic nitrogen concentrations and fixed carbon-to-nitrogen ratios from Hopkinson et al. (1998). Specifically, 
dissolved and particulate detrital carbon-to-nitrogen ratios are set to 10:1 and 106:16, respectively. Daily 
concentrations of USGS riverine TA and calculated estimates of DIC (see Najjar et al., 2020 for details) are 
directly prescribed as model inputs to the Susquehanna and the Potomac Rivers. In recent years when USGS 
products are not available, TA and DIC concentrations are computed from river discharge and the corre-
sponding discharge-TA and discharge-DIC relationships (Figure S1) derived from long-term daily USGS 
data products. Riverine TA and DIC concentrations in other smaller tributaries are held constant in time, 
following St-Laurent et al. (2020). These concentrations of organic carbon, TA, and DIC are combined with 
the freshwater discharge from the CBPWM (1985–2014) and the USGS (2015–2019) to provide riverine car-
bon and TA fluxes to ChesROMS-ECB.

Temperature and salinity along the model open boundary are derived from the World Ocean Database 
version 2018 (WOD 2018). Profiles (Boyer et al., 2018) within 10 km of the open boundary over the years 
2008–2018 are used to create a monthly climatology, which represents the reference boundary conditions 
for the year 2013. A two-dimensional spatial interpolation is first conducted on the temperature and salinity 
profiles to obtain monthly climatologies for the nine months when data are available. A one-dimensional 
temporal interpolation is then applied to these monthly climatologies to obtain a complete seasonal cycle 
of spatially varying temperature and salinity climatology for the reference year 2013. Long-term trends of 
these two variables are extracted from the same WOD data set over the years 1985–2018. Specifically, line-
ar regressions are applied to depth-averaged temperature and salinity to calculate the monthly long-term 
trends, which are then superimposed onto the monthly climatologies (of year 2013) to create interannually 
varying temperature and salinity boundary conditions from 1985 to 2018. Saturated O2 concentrations along 
the outer boundary are calculated from these temperature and salinity fields using a solubility equation 
(Garcia & Gordon, 1992). The MAB TA-salinity relationship from Cai et al. (2010) is applied to obtain oce-
anic TA concentrations. Long-term TA and DIC values spanning a latitudinal interval from 36° to 38°N (Xu 
et al., 2020) are used to calculate monthly TA-to-DIC ratios near the model boundary in the MAB. These 
ratios from 2011 to 2015 are averaged to estimate the spatially invariant reference ratio for the year 2013. The 
rate of change in TA-to-DIC ratios from 1982 to 2015 is calculated via a linear regression method: TA/DIC= 
−3.47  10−5

t  + 1.099, N = 408, p < 0.001, where t is the time in months (t = 0 refers to January 1982) and N 
is the number of monthly data points. This rate is superimposed onto the reference ratio in 2013 to generate 
a time series of TA-to-DIC ratio that decreases with time. DIC concentrations on the open boundary in the 
MAB are computed as TA concentrations divided by the TA-to-DIC ratio.

2.4.  Model Experiments

Two five-year reference runs and seven sensitivity experiments are conducted in this study. The first refer-
ence run is conducted from 1985 to 1989 (Ref1985) for comparisons against sensitivity simulations, as these 
are the earliest years for which WQMP data are available; the second reference run is conducted from 2015 
to 2019 (Ref2015) for model evaluation using recent carbonate system data (Friedman et al., 2020). Seven 
sensitivity experiments are compared to the reference run Ref1985 to quantify the relative impacts of glob-
al- and local-scale drivers on the decadal trends of the Chesapeake Bay carbonate system (Table 1). These 
sensitivity experiments have the same model forcings as in Ref1985, except that one of the following is in-
dividually modified to represent the conditions 30 years later (2015–2019): (1) increased atmospheric CO2 
concentrations (AtmCO2), (2) increased atmospheric temperature and downwelling long-wave radiation 
(AtmT), (3) increased oceanic DIC concentrations (OcnC), (4) decreased riverine NO3

− concentrations and 
the related increase in riverine TA concentrations (RivNO3), (5) decreased riverine organic nitrogen con-
centrations (RivON), and (6) increased riverine TA and DIC concentrations (RivC). In a final experiment 
(7) all of these global and local forcings are changed simultaneously (All, Table 1). Freshwater discharge 
in each sensitivity experiment was the same as in the Ref1985 simulation. The increases in riverine TA due 
to reduced riverine NO3

− concentrations are excluded from the RivC experiment, since these increases are 
included in the RivNO3 scenario.
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For the sensitivity experiments, linear regression is used to calculate the long-term change (2015–2019 rel-
ative to 1985–1989) in atmospheric forcing conditions, as well as biogeochemical concentrations in the 
rivers and on the continental shelf. Seasonality is considered in the change, where applicable. Specifically, 
for the sensitivity experiment AtmCO2, annual mean atmospheric CO2 records at Mauna Loa (Keeling & 
Keeling, 2017) are used to estimate a 57 ppm increase in CO2 concentrations over this 30-year time peri-
od (independent of season). ERA5 atmospheric temperature and downwelling long-wave radiation have 
been generally increasing (0.7°C and 6.3 W m−2 per 30 years, respectively), but with substantially greater 
warming occurring from spring to early fall (Hinson et al., 2021). Thus, seasonally varying changes in at-
mospheric temperature and long-wave radiation are applied to the sensitivity experiment AtmT (Figure 2a). 
Atmospheric variables other than temperature and downwelling long-wave radiation exhibit minor changes 
over the 30-year period of interest and thus are left unmodified. Oceanic DIC concentrations along the 
model boundary in the OcnC experiment are increased via a reduced TA-to-DIC ratio (see Section 2.3), 
resulting in a 23 mmol m−3 increase in boundary DIC concentrations over these 30 years. For the RivNO3, 
RivON, and RivC sensitivity experiments, seasonally varying 30-year changes in terrestrial inputs (riverine 
NO3

−, organic nitrogen, TA and DIC) are applied to the largest two tributaries of the Bay (the Susquehanna 
and Potomac Rivers) since these trends vary substantially between seasons (Figures 2b and 2c). Specifically, 
monthly trends are computed via linear regression of USGS WRTDS flow-normalized riverine NO3

− and or-
ganic nitrogen concentrations and USGS TA and calculated DIC products. On average, the 30-year changes 
in Susquehanna NO3

−, organic nitrogen, TA, and DIC concentrations are −20 mmol m−3, –12 mmol m−3, 
+195 meq m−3, and +146 mmol m−3, respectively (see Section 1). The increase in TA is thus dominated 
by the increase in carbonate alkalinity, while NO3

− reduction only accounts for one tenth of the total in-
crease. The increase in TA is also proportionally larger than the increase in DIC in the Susquehanna River 
(Figure  2c). Although total organic carbon loading has increased over the past three decades (Zhang & 
Blomquist, 2018), there are no significant trends in flow-normalized concentrations (Zhang, pers. comm.). 
Additionally, in order to isolate the impact of long-term trends in nutrient inputs on the carbonate system 
without perturbing the estuarine physics, only the nitrogen concentrations are modified in this study (i.e., 
freshwater discharge and organic carbon concentrations are unchanged in sensitivity simulations). Model 
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Simulation Atmospheric CO2

Atmospheric thermal 
forcing Riverine NO3

− Riverine organic N Riverine DIC & TA Oceanic DIC

Ref1985 1985–1989 1985–1989 1985–1989 1985–1989 1985–1989 1985–1989

Ref2015 2015–2019 2015–2019 2015–2019 2015–2019 2015–2019 2015–2019

AtmCO2 Ref1985 + ∆↑a in 
atmos. CO2

1985–1989 1985–1989 1985–1989 1985–1989 1985–1989

AtmT 1985–1989 Ref1985 + ∆↑ in 
atmos. forcing

1985–1989 1985–1989 1985–1989 1985–1989

RivNO3 1985–1989 1985–1989 Ref1985 + ∆↓b in riv. 
NO3

−
1985–1989 Ref1985 + ∆↑ in riv. 

TANO3
c

1985–1989

RivON 1985–1989 1985–1989 1985–1989 Ref1985 + ∆↓ in riv. 
organic N

1985–1989 1985–1989

RivC 1985–1989 1985–1989 1985–1989 1985–1989 Ref1985 + ∆↑ in riv. 
DIC & TAC

d
1985–1989

OcnC 1985–1989 1985–1989 1985–1989 1985–1989 1985–1989 Ref1985 + ∆↑ in 
ocn. DIC

All Ref1985 + ∆↑ in 
atmos. CO2

Ref1985 + ∆↑ in 
atmos. forcing

Ref1985 + ∆↓ in riv. 
NO3

−
Ref1985 + ∆↓ in riv. 

organic N
Ref1985 + ∆↑ in riv. 

DIC & TA
Ref1985 + ∆↑ in 

ocn. DIC
a∆↑ refers to 30-year increase in model forcings (Section 2.4). b∆↓ refers to 30-year decrease in model forcings. c∆↑ in riv. TANO3 refers to the increase in total 
alkalinity due to reduced riverine NO3

− concentrations. Carbonate alkalinity in RivNO3 experiment remains the same as in the 1985–1989 reference run 
(Ref1985). d∆↑ in riv. TAC refers to the increase in carbonate alkalinity, since the increase in alkalinity due to reduced riverine NO3

−concentrations is included in 
the RivNO3 experiment.
Note. Riverine and oceanic inputs are modified by only changing concentrations, while freshwater discharge remains the same as in the Ref1985 simulation.

Table 1 
The Nine Numerical Experiments Conducted in This Study
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results from each of the seven sensitivity experiments are compared to 
the outputs from Ref1985 to quantify the contribution of each driver to the 
total carbonate system variability over the past 30 years (Table 1). The 
sum of these individual changes is computed and compared with the dif-
ference between Ref1985 and All simulation in which all global and local 
forcings are changed simultaneously.

2.5.  Model Skill Assessment and Decadal Trend Calculation

Model skill was assessed by comparing model results from Ref2015 to ob-
servations along the main stem of the Chesapeake Bay. Since modeled 
temperature and salinity have been extensively evaluated with WQMP 
data as shown in Feng et al. (2015) and Hinson et al. (2021) and nitrogen 
concentrations have been evaluated in Da et al. (2018), this study focuses 
on the evaluation of the carbonate system. Because of the large uncer-
tainties associated with electrode pH data from the WQMP, recent car-
bonate system data from the 18 main stem stations (Figure 1) from Fried-
man et al. (2020) are used here for model evaluation. Specifically, hourly 
modeled carbonate system variables matching the specific times when 
data were collected are selected for point-to-point comparisons through-
out the water column. Model skill statistics include root-mean squared 
difference (RMSD) and model bias; normalized metrics are visualized on 
a target diagram (Hofmann et al., 2008; Jolliff et al., 2009) in the online 
supplementary material. All pH observations from Friedman et al. (2020) 
and model results are reported on the total scale. Additional model skill 
statistics for years 1985–1989 are included in the online supplementary 
material (Table S1).

Long-term linear trends in surface pH are also computed from the glass 
electrode WQMP data (1996–2018) and CONMON data (mid-2000s to 
present, see Section 2.1) in each month of the year. These pH data are 
reported on the NBS scale. The linear regressions are conducted over all 
years that are available in each data set. Trends calculated from the two 
different sources of glass electrode pH data are compared to the modeled 
changes in the carbonate system caused by all drivers combined (sen-
sitivity experiment All in Section 2.4). An alternative method would be 
to derive the 30-year changes in the carbonate system as the difference 
between our two reference simulations (Ref2015 – Ref1985). However, the 
large interannual variability in terrestrial and atmospheric inputs results 
in large perturbations in the Chesapeake Bay carbonate system from year 
to year, which could bias the 30-year changes due to specific wet and dry 
conditions (e.g., high precipitation and discharge in 2018). The difference 
between the reference run (Ref1985) and the All sensitivity experiment is 
thus a more robust method for estimating the decadal trends.

3.  Results
3.1.  Evaluation of Modeled Carbonate System

Point-to-point comparisons with observations show that the model reproduces temperature, salinity, oxy-
gen, TA, and DIC quite well throughout the Bay (Table 2; Figure S2), but some discrepancies exist in pH 
and ΩAR, particularly in low-salinity regions (Figure 3). As described in Section 2, observed and modeled 
pH (total scale) and ΩAR are calculated in CO2SYS using the equilibrium constants of Cai and Wang (1998). 
Skill metrics of temperature and salinity (Table 2) show small model bias (0.04°C and −0.56 units, respec-
tively) and RMSD (∼1°C and ∼2 units). TA and DIC concentrations in the Bay range from 900 to 2200 meq 
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Figure 2.  Seasonality of decadal trends applied to model sensitivity 
experiments for: (a) atmospheric temperature and downwelling long-wave 
radiation, (b) riverine NO3

− and organic nitrogen concentrations, and (c) 
riverine total alkalinity and dissolved inorganic carbon concentrations. 
The whiskers in panel (a) are one standard deviation, representing the 
spatial variability of monthly trends, and the whiskers in panel (b) and (c) 
represent the standard error of the slope of the monthly linear regression. 
Black dots in panel (b) and (c) indicate significant linear trends (p < 0.05).
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Variable

Mean ± standard deviation

Bias Unbiased RMSDb RMSDModel Observation

Temperature (°C) 18.42 ± 7.69 18.38 ± 7.97 0.04 1.09 1.09

Salinity 18.19 ± 5.53 18.75 ± 4.96 −0.56 1.94 2.02

TA (meq m−3) 1723 ± 222 1718 ± 203 5.41 89.97 90.02

DIC (mmol m−3) 1599 ± 221 1621 ± 197 −22.23 105.89 108.08

pH (total) 8.06 ± 0.31 7.97 ± 0.25 0.09 0.22 0.24

ΩAR 1.67 ± 0.82 1.34 ± 0.53 0.33 0.59 0.68

Oxygen (mg L−1) 8.04 ± 2.65 7.89 ± 2.71 0.15 1.24 1.25
aN is the total number of data points collected from June 2016 to June 2018. bRMSD refers to root-mean squared 
difference. Unbiased RMSD represents the RMSD after removing the mean from the model estimates or observations 
(Jolliff et al., 2009).

Table 2 
Summary of Model Skill Metrics Calculated for Physical and Biogeochemical Fields Throughout the Water Column 
(Na = 552)

Figure 3.  Model-data comparisons as a function of salinity for: (a) total alkalinity, (b) dissolved inorganic carbon, (c) 
pH (total scale) and (d) ΩAR using recent carbonate system data (Friedman et al., 2020) throughout the water column at 
18 stations (see Figure 1) from 2016 to 2018.
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m−3 and 900–2100 mmol m−3, respectively, with the lowest values in the upper Bay (salinity ≤ 5, more than 
250 km from the Bay mouth) and the highest values in the lower Bay (salinity > 20, less than 75 km from 
the Bay mouth). The model captures the observed TA and DIC concentrations relatively well (R2 = 0.84 and 
0.77, respectively; N = 552, Figures 3a and 3b), while the pH and ΩAR comparisons are not quite as good 
especially in the upper Bay (R2 = 0.50 and 0.48, respectively; N = 552, Figures 3c and 3d). On average, the 
model overestimates TA by ∼5 meq m−3 and underestimates DIC by ∼22 mmol m−3 (Table 2), resulting in a 
positive bias in model estimates of pH and ΩAR (0.09 pH units and 0.33, respectively). A closer examination 
of the modeled pH and ΩAR shows that discrepancies are largest in relatively fresh regions in the summer 
when primary production is the highest. It is likely that an overestimation of primary production in recent 
wet years causes the overestimation of summer pH and ΩAR, which is consistent with the positive bias in 
modeled oxygen concentrations at the surface (0.33 mg L−1). Additional calculations suggest that these bias-
es in pH and ΩAR have minimal impacts on the decadal trends computed in this study (Figure S3).

Seasonal averages of modeled fields in surface waters are compared to the mean observations, which shows 
that the spatial and temporal variability in the carbonate system is captured relatively well by the mod-
el, although some spatiotemporal bias exists (Figure 4). Observed TA and DIC concentrations (Figures 4a 
and 4b) both increase from their minimum values in the relatively fresh tributaries (∼900–1,200 meq m−3 
and mmol m−3) to their maximum values in the south (∼1,800–2100 meq m−3 and ∼1,600–1,900 mmol m−3) 
where the Bay connects to the Atlantic Ocean. Seasonally, TA and DIC concentrations are generally lower in 
the spring and summer, and are higher in the fall and winter. This spatial and seasonal variability in TA and 
DIC is well simulated in the model, excluding underestimates in the lower Bay during the spring, which are 
consistent with a slight overestimation of primary productivity in this region (St-Laurent et al., 2020). Max-
imum pH values (Figure 4c) are observed in the middle Bay, specifically in the spring and summer, where 
and when primary production is usually highest. Overall, the model captures the seasonal variability in pH 
relatively well, except in the summer when pH is overestimated. Similar to pH, surface ΩAR (Figure 4d) is 
lowest in the upper Bay and tributaries, and is higher in the middle and lower Bay. Modeled ΩAR reproduces 
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Figure 4.  Comparison between model and observations for surface (a) total alkalinity, (b) dissolved inorganic carbon, (c) pH (total scale) and (d) ΩAR. The 
colored contours represent seasonally averaged model results for June 2016 to June 2018; the circles represent recent point observations from Friedman 
et al. (2020) made over the same time period. (MAM = spring, JJA = summer, SON = fall, and DJF = winter).
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Figure 5.  Overall changes in modeled surface pH due to all global and local drivers combined (ΔpHall = All–Ref1985). 
The purple line in the last panel represents the mainstem transect used in Figures 6–9. (MAM = spring, JJA = summer, 
SON = fall, and DJF = winter). Black circles show the locations of the model results at four stations in Table 3.

Table 3 
Rate of Change in Surface PH (decade-1) Computed at Four Stations From WQMP Data, Continuous Monitoring Data, and Model Simulations (See 
Figure 1 for Station Locations; Stations are Numbered From North to South)
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the observed spatial variability relatively well, especially in the fall and winter. Overestimation of ΩAR is 
most evident in the summer, again consistent with a modest overestimation of primary production, which 
results in greater seasonal variability in modeled ΩAR compared to observations.

3.2.  Quantifying Decadal Changes in Surface pH

Daily averaged CONMON pH data sometimes exhibit different trends than the monthly/semi-monthly 
WQMP data collected at adjacent locations (Table 3). At Station 1 where surface pH has been increasing 
in the spring and decreasing in the summer and fall in both datasets, the maximum reduction rate reach-
es ∼ −0.15 pH units decade−1 in the summer and early fall. At Station 4, CONMON trends and WQMP 
trends agree relatively well, with significant reductions of −0.1 to −0.2 pH units decade−1 especially in the 
spring and summer. At Stations 2 and 3, however, monthly trends calculated from the neighboring CON-
MON and WQMP data disagree with each other in most seasons. For example, these trends are opposite 
in sign during 8 of the 12 months at Station 2. This could partially be due to a sampling frequency issue. 
pH trends calculated from CONMON data that are resampled at the same time when WQMP data exist are 
quite different from the trends computed from daily averaged CONMON data (not shown). In addition, a 
simple linear regression model showed relatively low agreement between these two data sets (R2 < 0.55; 
Figure S4); this is not unexpected considering that the uncertainty in each of these types of data can be 
up to 0.2 pH units, and indicates relatively low confidence in directly using CONMON and WQMP data 
to quantify how decadal trends in the Chesapeake Bay carbonate system vary month by month. However, 
given that WQMP pH data agree relatively well with high-quality pH data (Friedman et al., 2020) (R2 = 0.8, 
not shown), historical WQMP pH data may be used to estimate interannual and spatial variability in the 
Chesapeake Bay carbonate system as long as they are paired with high-quality pH data and errors are esti-
mated carefully (Herrmann et al., 2020).

The seasonal variability in surface pH trends is estimated from the model as well. In order to calculate the 
rate of change in modeled pH per decade over the past 30 years without biasing the results with interannual 
variability in atmospheric temperature and precipitation, surface pH from the Ref1985 simulation is subtract-
ed from the All sensitivity simulation (Section 2.4; Table 1). The resulting decadal trend (ΔpHall, Figure 5) is 
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Figure 6.  Seasonal cycle of the 30-year changes (Δ) in surface dissolved inorganic carbon (DIC (mmol m−3) along the main stem due to: (a) increased 
atmospheric CO2, (b) increased atmospheric thermal forcing, (c) increased oceanic DIC concentrations, (d) decreased riverine NO3

− concentrations, (e) 
decreased riverine organic nitrogen concentrations, (f) increased riverine TA and DIC concentrations, (g) sum of the Δ in (a)–(f), and (h) all six drivers 
combined. Δ = sensitivity test–Ref1985. Note change in color bar range in (f), (g) and (h).



Journal of Geophysical Research: Oceans

up to +0.13 pH units decade−1 (+0.39 per 30 years) near the mouth of the Susquehanna River and decreases 
gradually toward the southern Bay to −0.02 to −0.08 pH units decade−1 (−0.06 to −0.25 per 30 years). These 
30-year changes in surface pH are usually smaller than the spatial variability in pH in the upper Bay, but 
they are comparable in the middle and lower Bay (Figure 4c). Moreover, this trend shows a strong season-
al cycle with the greatest reductions from April to October in the middle Bay and almost no trend in the 
winter, particularly north of the Potomac River (Figure 5). Overall, these changes in surface pH are not only 
apparent along the mainstem, but also expand into the Bay's shallow shoals and tributaries where calcifying 
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Figure 7.  As in Figure 6, except for surface total alkalinity (meq m−3). Note change in color bar range in (f), (g), and (h).

Figure 8.  As in Figure 6, except for surface pH (total scale). Note change in color bar range in (g) and (h).
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organisms typically reside. Additionally, modeled pH trends are consistent between the surface and bottom 
(Figure S5) especially in these shallow areas.

Given the discrepancy between the surface pH trends computed from the CONMON and WQMP datasets, 
the modeled pH trends are generally in reasonable agreement with the observed trends (Table 3). At Sta-
tions 1 and 2 (Table 3), the modeled rate of change in surface pH in the summer reaches −0.08 pH units 
decade−1 (−0.24 per 30 years, Figure 5), which is smaller than the maximum decrease calculated from the 
long-term data. In general, these modeled trends match the sign of the rate of change computed from either 
the CONMON and/or WQMP data, except that the model results do not show the increasing trend evident 
in the spring WQMP data at Station 1, though increasing trends are apparent farther north near the mouth 
of the Susquehanna River (Figure 5; Table S2). At Station 3, modeled pH trends agree with both datasets 
relatively well from August to January. At Station 4, the seasonal cycle of the decadal rate of change in 
modeled pH agrees with the seasonal variability showed in both the WQMP and CONMON data quite well. 
The rate of change in pH ranges from −0.03 to −0.05 pH units decade−1 (−0.09 to −0.15 per 30 years) in the 
spring and summer, and the values are smaller in the fall and winter. Additionally, surface pH trends are 
calculated from WQMP data and model simulations at 17 stations along the main channel of the Bay (Ta-
ble S2). Both WQMP data and model results show overall increasing pH trends throughout the year at the 
northernmost stations near the mouth of the Susquehanna River. Toward the southern stations, however, 
both data and model show more negative trends, particularly in the summer months.

3.3.  Mechanisms Causing Decadal Changes in the Carbonate System

This section summarizes the model-derived changes in the Chesapeake Bay carbonate system due to each 
individual driver and all six drivers combined (Section 2.4; Table 1). Unless otherwise noted, values re-
ported in this section represent changes (Δ) over 30 years along the transect in the main channel of the 
Chesapeake Bay (purple line in Figure 5). These changes are plotted as mean annual time series to high-
light their seasonal and spatial variability. The four variables include surface DIC (Section 3.3.1; Figure 6), 
surface TA (Section 3.3.2; Figure 7), surface pH (Section 3.3.3; Figure 8) and surface ΩAR (Section 3.3.4; 
Figure 9). The relative impact of each driver is individually quantified by calculating the difference between 
the Ref1985 simulation and each sensitivity test (Section 2.4; Table 1). Subscripts of these changes (panels 
a–f in Figures 6–9) represent: increased atmospheric CO2 concentrations (ΔAtmC), increased atmospheric 
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Figure 9.  As in Figure 6 except for surface ΩAR. Note change in color bar range in (g) and (h).
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thermal forcing (ΔAtmT), increased oceanic DIC concentrations (ΔOcnC), reduced riverine NO3
− concentra-

tions (ΔRivNO3), reduced riverine organic nitrogen concentrations (ΔRivON), and increased riverine DIC and 
TA concentrations (ΔRivC). Furthermore, these individual changes are linearly added to obtain the sum 
of the changes (Figures 6g, 7g, 8g, and 9g), which are compared to the 30-year changes due to all drivers 
combined. Similar to the definition of the modeled changes in pH over the past 30 years (ΔpHall, Section 3.2; 
Figure 8h), the 30-year changes in surface DIC, TA and ΩAR due to all six drivers combined are defined as 
ΔDICall (Figure 6h), ΔTAall (Figure 7h) and ΔΩall (Figure 9h), which are calculated as the difference between 
the Ref1985 simulation and the All sensitivity simulation (Section 2.4; Table 1).

3.3.1.  Seasonal Cycle of the 30-Year Change in Surface DIC

Each sensitivity experiment shows a distinct pattern in the changes in surface DIC over the past three dec-
ades. For example, ΔDICAtmC ranges between +10 and + 25 mmol m−3, with slightly greater values in the 
summer and middle Bay (Figure 6a). Over the same time period, ΔDICAtmT is positive in the summer (up 
to +15 mmol m−3), and negative (−5 to −10 mmol m−3) in the spring (Figure 6b). Largest ΔDICOcnC occurs 
in the lower Bay during the summer (∼10 mmol m−3), with smaller values in closer proximity to the inner 
Chesapeake Bay (e.g., there are almost no changes in the middle and upper Bay; Figure 6c). ΔDICRivNO3 
reaches +30 mmol m−3 in the summer in the middle Bay, but it is barely noticeable in cooler seasons (Fig-
ure 6d). Similarly, ΔDICRivON is only apparent in the summer, with values of up to +15 mmol m−3 in the 
middle Bay (Figure 6e). Maximum ΔDICRivC is found in waters adjacent to the Susquehanna River in late 
summer (+240 mmol m−3); these changes are smaller and seasonally uniform (+30 mmol m−3) near the 
mouth of the Bay (Figure 6f).

There are strong seasonal and spatial variations in the 30-year changes in Chesapeake Bay surface DIC 
(i.e., ΔDICall, Figure 6h). Over the past three decades, ΔDICall is positive throughout the Bay, increasing by 
up to +260 mmol m−3 in the upper Bay and by a lesser amount nearer to the Bay mouth (+60 mmol m−3). 
In the middle Bay, ΔDICall is greatest in the late spring and summer, with a relatively large annual range 
of ∼80 mmol m−3. The seasonal variability of ΔDICall is even greater (∼180 mmol m−3) in the upper Bay, 
with values peaking in the late summer and early fall. The magnitude of these changes is dominated by the 
increase in riverine DIC and TA, while results from other experiments primarily contribute to the seasonal 
variability of ΔDICall in the middle and lower Bay. For example, about half of the seasonal variability in 
ΔDICall is caused by ΔDICRivNO3 in the middle Bay. Additionally, the sum of the changes due to each individ-
ual driver (Figure 6g) reproduces the spatiotemporal pattern of ΔDICall (Figure 6h) quite well.

3.3.2.  Seasonal Cycle of the 30-Year Change in Surface TA

Changes in surface TA due to increased riverine TA and DIC concentrations (ΔTARivC) display the larg-
est values, while other experiments show much smaller changes over the past three decades. Specifically, 
ΔTAAtmC and ΔTAOcnC are zero throughout the Chesapeake Bay (Figures 7a and 7c). The value of ΔTAAtmT is 
positive (<10 meq m−3) in the summer and fall, while being negative (up to −4 meq m−3) in the winter and 
spring (Figure 7b). ΔTARivNO3 shows the second largest changes throughout the Bay among all six sensitivity 
experiments, with the largest values occurring in the upper Bay (+18 meq m−3) and little changes in the 
middle and lower Bay especially in the summer (Figure 7d). Additionally, ΔTARivON is less than 2 meq m−3 
throughout the Bay (Figure 7e). As was the case for DIC, the value of ΔTARivC peaks around +260 meq m−3 
and exhibits a notable seasonal cycle in the upper Bay; its value decreases gradually to +40 meq m−3 in the 
lower Bay (Figure 7f).

Over the past 30 years, changes in Chesapeake Bay surface TA (i.e., ΔTAall, Figure 7h) resemble the magni-
tude as well as the spatial and temporal patterns of ΔTARivC (Figure 7f). Similar to ΔDICall, the greatest value 
of ΔTAall is also in the upper Bay (+280 meq m−3) and its value decreases to +40 meq m−3 in the lower Bay 
(Figure 7h). However, ΔTAall has much smaller seasonal variability than ΔDICall except in the upper Bay 
where its seasonal range is similar (∼200 meq m−3). Furthermore, these changes in surface TA are almost 
linearly additive (Figure 7g), with ΔTARivC primarily contributing to these decadal changes and other exper-
iments displaying much smaller or no changes.
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3.3.3.  Seasonal Cycle of the 30-Year Change in Surface pH

Each sensitivity experiment displays a distinct spatiotemporal influence on surface pH in the Chesapeake 
Bay. For example, ΔpHAtmC is relatively consistent over the seasons, with values of −0.05 to −0.07 pH units 
throughout most of the main channel (Figure 8a). Additionally, ΔpHAtmT switches sign seasonally, with 
values of +0.02 to +0.07 pH units in the spring in the upper Bay and values of up to −0.05 pH units in the 
summer in the middle Bay (Figure 8b). The value of ΔpHOcnC is generally near −0.02 pH units in the lower 
Chesapeake Bay, and it diminishes substantially toward the middle and upper Bay (e.g., very small changes 
50 km from the Bay mouth, Figure 8c). In the upper Bay, ΔpHRivNO3 is positive (up to +0.05 pH units) except 
in the summer. In the middle and lower Bay, ΔpHRivNO3 ranges from near zero in the winter to −0.08 pH 
units in the summer (Figure 8d). ΔpHRivON has a similar spatiotemporal pattern as ΔpHAtmT, here again the 
most negative values (−0.04 pH units) are found in the middle Bay during the summer (Figure 8e). Unlike 
other sensitivity experiments, ΔpHRivC is almost always positive throughout the Chesapeake Bay, with max-
imum values found in the spring in the upper Bay (+0.3 pH units; Figure 8f; these maximum values are 
represented by the white contours in the panel).

There are evident spatiotemporal variations in the decadal changes in surface pH over the past 30 years (i.e., 
ΔpHall, Figure 8h). Overall, ΔpHall is negative throughout most of the Bay but positive in the northernmost 
reaches of the Bay where it ranges between +0.2 to +0.4 pH units in the fall, winter and spring but is near 
zero in the summer. The minimum ΔpHall occurs in the middle Bay in the late spring and early summer 
with values reaching −0.24 pH units. Specifically, ΔpHAtmC and ΔpHRivNO3 are the two largest components 
contributing to ΔpHall, and ΔpHRivNO3 is responsible for nearly half of the temporal variability in ΔpHall in 
the middle Bay.

3.3.4.  Seasonal Cycle of the 30-Year Change in Surface ΩAR

The seasonal cycle of the 30-year change in surface ΩAR varies substantially among the six individual sen-
sitivity experiments (Figures 9a–9f). For example, surface ΔΩAtmC is negative throughout the year, with the 
greatest changes reaching −0.3 in the middle Bay in the summer (Figure 9a). Unlike ΔΩAtmC, ΔΩAtmT is 
only apparent in the summer (reaches −0.1) and spring (up to +0.2) in the middle Bay (Figure 9b). Another 
minor 30-year change is ΔΩOcnC, which only reaches −0.05 to −0.1 near the mouth of the Bay (e.g., Fig-
ure 9c). In contrast, ΔΩRivNO3 reaches −0.5 in the late spring and early summer, but is only around −0.05 in 
the winter. Spatially, ΔΩRivNO3 is the smallest near the river and the Bay mouth (Figure 9d). ΔΩRivON shares 
similar spatial and temporal patterns as ΔΩRivNO3, but to a lesser extent (e.g., with values reaching −0.2 in 
the summer; Figure 9e). Counteracting these changes, ΔΩRivC ranges from +0.08 to +0.2 throughout much 
of the main channel (Figure 9f).

The mean annual time series of the decadal changes in surface ΩAR (i.e., ΔΩall, Figure 9h) shows substantial 
seasonal and spatial variability. The pattern of ΔΩall is similar to that of ΔpHall, but varies between −0.9 
and + 0.1, with small positive values found only in the upper Bay and the most negative values found in 
the summer throughout the middle and lower Bay (Figure 9h). Regardless of the nonlinearity in the car-
bonate system, ΔΩall agrees well with the sum of the changes calculated from each individual sensitivity 
experiment (Figure 9g). Specifically, ΔΩAtmC and ΔΩRivNO3 accounts for most of the variability in ΔΩall, while 
ΔΩRivC plays a minor counteracting role.

4.  Discussion
The Chesapeake Bay surface carbonate system has seen substantial change over the past three decades. Our 
model experiments suggest that multiple drivers have directly modified physical and/or biogeochemical 
processes, producing distinct impacts on TA, DIC, pH and ΩAR. Specifically, global-scale drivers include 
increased atmospheric CO2 concentrations, increased atmospheric thermal forcing and increased oceanic 
DIC concentrations; local-scale drivers include reduced riverine NO3

− and organic nitrogen concentrations, 
and increased riverine DIC and TA concentrations. Causes of the impacts on the Chesapeake Bay carbonate 
system due to each individual driver over the past three decades are discussed in Section 4.1 (global drivers) 
and Section 4.2 (local drivers). These changes are compared to previous studies in Section 4.3, which in-
cludes decadal trends in other coastal regions and uncertainties associated with the glass electrode pH data.
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4.1.  Relative Impacts of Global-Scale Drivers on the Chesapeake Bay Carbonate System Over the 
Past 30 Years

Elevated atmospheric CO2 concentration over the past three decades has been the primary global-scale driv-
er impacting the Chesapeake Bay carbonate system via modification of the air-water CO2 flux. Atmospheric 
CO2 records at Mauna Loa (Keeling & Keeling, 2017) show seasonally consistent increasing trends over the 
past three decades, with only a slightly lower change in the spring and summer (+56.5 ppm) compared with 
that in the winter (+57.5 ppm). This motivated the use in this study of a seasonally independent change 
(+57 ppm). In general, the upper Chesapeake Bay outgasses CO2 throughout the year, while the middle Bay 
takes up CO2, which likely reflects a shift from net heterotrophy in the upper Bay to net autotrophy in the 
middle Bay (Chen et al., 2020; Friedman et al., 2020; Herrmann et al., 2020; Kemp et al., 1997). Increased 
CO2 concentrations in the atmosphere result in less outgassing in the upper Bay and more uptake in the 
middle Bay (St-Laurent et al., 2020). This change in air-water CO2 exchange increases surface DIC (+5 to 
+25 mmol m−3 per 30 years, Figure 6a) but not TA (Figure 7a), and decreases surface pH (−0.02 to −0.07 
pH units per 30 years, Figure 8a) and ΩAR (−0.05 to −0.32 per 30 years, Figure 9a). Moreover, the increase 
in surface DIC and the decrease in surface ΩAR have a clear spatiotemporal pattern, with greatest changes 
occurring when and where productivity is high (in the summer and in the mid-Bay).

Variability in biological modifications and seawater chemistry, rather than changing atmospheric CO2, ex-
plains the spatiotemporal patterns of decadal changes in the Chesapeake Bay surface carbonate system. In 
the summer and in the middle Bay, surface DIC and pCO2 levels are lower than other seasons and regions 
due to high primary production (Brodeur et al., 2019; Friedman et al., 2020; Herrmann et al., 2020). For a 
seasonally uniform increase in atmospheric CO2, there can be more uptake of CO2 in the summer and in 
the middle Bay where there is a biologically driven undersaturation of pCO2 relative to the atmosphere, 
which leads to greater increases in surface DIC (Figure 6a). Another way to resolve these changes in surface 
DIC is by using the modeled Revelle factor, DIC concentrations, pCO2 concentrations, and the changes in 
pCO2 at the surface. For example, in the upper Bay where DIC concentrations are low while pCO2 levels 
and the Revelle factor are high, the increases in surface DIC are smaller (Figure 6a). As a result, decadal 
increases in surface DIC due to increased atmospheric CO2 are higher in the summer and in the middle 
Bay, while those changes are lowest in the upper Bay (Figure 6a). Because of the high sensitivity of ΩAR to 
the TA-to-DIC ratio (Cai, Feely, et al., 2020; Takahashi et al., 2014), the reduction in ΩAR (Figure 9a) follows 
the spatiotemporal patterns of the increases in DIC (Figure 6a) and the decreases in 2

3CO . The reduction 
in surface pH due to increased atmospheric CO2 has relatively small seasonality in most of the Bay's main 
channel (Figure 8a), ranging from −0.06 to −0.07 pH units per 30 years, which is comparable with the rate 
of pH reduction observed in the open ocean (e.g., Takahashi et al., 2014). Since the sensitivity factor of pH 
to the changes in DIC is higher when salinity is lower (Cai, Feely, et al., 2020), and the increase in DIC due 
to elevated atmospheric CO2 shows smaller values in the upper Bay where salinity is lower (Figure 6a), the 
resulting changes in surface pH has relatively small spatial variability. Parameters related to the air-water 
CO2 flux, such as CO2 solubility and gas transfer velocity, vary substantially throughout the year given the 
strong seasonal variability in temperature (>25 °C) in the Chesapeake Bay (Figure S6). However, these two 
parameters have opposite responses to water temperature (Figure S6) and thus the seasonal variations in 
decadal changes in surface DIC is likely unrelated to the temperature impacts on the air-water CO2 flux.

Increased atmospheric thermal forcing has less of an impact on the Chesapeake Bay carbonate system than 
that from increased atmospheric CO2, and the spatiotemporal patterns of the resulting decadal changes 
are quite different. As described in Section 2.4, changes in the atmospheric thermal forcing vary substan-
tially throughout the year, yet the Chesapeake Bay continues to warm in all months of the year (Ding & 
Elmore,  2015; Hinson et  al.,  2021; Muhling et  al.,  2018). Increased water temperature promotes earlier 
phytoplankton growth and increases primary production in the spring especially in the upper Bay (Fig-
ure S7b), which results in less DIC (Figure 6b) and slightly more oxygen at the surface in April (Figure S8b). 
Additionally, these changes are reflected in surface pH and ΩAR; both variables are higher in the upper Bay 
in the spring (Figures 8b and 9b) due to the reduction in surface DIC. In the summer, however, there are 
no apparent trends in primary production due to increased atmospheric thermal forcing. Increased water 
temperature enhances respiration and production while decreasing gas solubility, resulting in counteract-
ing impacts on DIC. Because respiration increases more than production when temperatures rise (Lomas 
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et al., 2002), the increase in DIC in the summer (Figure 6b) is likely a net effect of enhanced respiration and 
production opposed by decreased CO2 solubility, which results in net reductions in summer pH and ΩAR 
(with values reaching −0.05 pH units and −0.12 per 30 years, respectively; Figures 8b and 9b). Additionally, 
increased temperature decreases pH and increases ΩAR by modifying the dissociation constants and calcium 
carbonate solubility, e.g., about −0.01 pH units and <+0.01 of change in pH and Ω, respectively, given a 
+0.7 °C increase in surface water temperature over the past 30 years (Hinson et al., 2021). However, these 
impacts are much smaller than those due to biological processes.

The final global-scale driver is the increased oceanic DIC concentrations in the MAB, primarily caused by 
the increase in atmospheric CO2 (Xu et al., 2020). Near the Bay mouth, this has slightly increased DIC (Fig-
ure 6c) and correspondingly decreased pH and ΩAR (Figures 8c and 9c) over the past 30 years. As expected, 
the impact from the Atlantic Ocean on the Bay lessens with distance from the Bay mouth. Because of the 
long distance between the Bay mouth and the model open boundary located in the MAB where oceanic 
DIC concentrations are increased, the rate of DIC increase near the Bay mouth (up to +10 mmol C m−3 per 
30 years in the summer) is roughly one third of the rate calculated in the MAB (Xu et al., 2020). However, 
the 30-year increase in surface DIC due to all drivers combined reaches +60 mmol C m−3 in the same region 
of the Bay (Figure 6h).

4.2.  Relative Impacts of Local-Scale Drivers on Chesapeake Bay Carbonate System Over the Past 
30 Years

Among the local-scale drivers analyzed here, NO3
− reductions from the Chesapeake Bay watershed are re-

sponsible for the largest trends in pH and ΩAR over the past 30 years. Reduced riverine NO3
− concentrations 

impact the carbonate system by (1) directly increasing surface TA and by (2) decreasing primary production 
and hence decreasing surface TA. Since NO3

− is the conjugate base of a strong acid (HNO3), decreased 
NO3

− concentrations directly increase TA and correspondingly result in higher pH and ΩAR, especially in 
the upper Bay. In contrast, biological responses of the carbonate system to NO3

− reductions have the oppo-
site sign and are associated with substantial seasonal variability. Since nitrogen limits primary production 
throughout much of the Chesapeake Bay (except where light is the limiting factor in the upper Bay; Kemp 
et al., 2005), NO3

− reductions (Moyer & Blomquist, 2020; Zhang et al., 2015) decrease primary production 
and thus leave more DIC and less TA in surface waters, subsequently decreasing both surface pH and ΩAR. 
From the late spring to early fall, nitrogen is most limiting (Kemp et al., 2005) and primary production rates 
are usually highest (Harding et al., 2002; Son et al., 2014); therefore, biological responses to NO3

− reductions 
are greatest during this time. Together, biological impacts outweigh the direct impacts from NO3

− reduc-
tions especially in the middle and lower Bay, resulting in net increases in DIC and net decreases in TA, pH 
and ΩAR at the surface (Figures 6, 7, 8, and 9d). However, in the upper Bay where light limits production 
and nitrogen is replete, the direct impact of reduced riverine NO3

− dominates and results in slight increases 
in TA and pH. Furthermore, these changes associated with reduced riverine NO3

− inputs account for nearly 
half of the changes in surface DIC, pH and ΩAR due to all six drivers combined, especially in the middle Bay 
(Figures 6h, 8h and 9h).

Riverine organic nitrogen inputs, including both labile and refractory components, have also been reduced 
over the past 30 years and also impact the Chesapeake Bay carbonate system most during the summer. De-
creased organic nitrogen initially yields less decomposition (and higher oxygen concentrations, Figure S8e) 
in the upper Bay, which then lowers NH4

+ levels (Fig. S9e) and primary production (Figure S7e), ultimately 
contributing to an increase in surface DIC and reductions in surface pH and ΩAR. Reductions in riverine 
organic nitrogen have spatiotemporal impacts on the carbonate system that are similar to but lower in mag-
nitude than those resulting from reductions in NO3

− for two reasons: (1) the 30-year reductions in organic 
nitrogen are smaller than those of NO3

− (Figure 2b) and (2) the refractory component of organic nitrogen 
does not impact the biogeochemical processes. Specifically, the increase in surface DIC due to reductions 
in organic nitrogen (Figure 6e) is about half the value of the NO3

− counterpart; TA barely changes and the 
reductions in pH and ΩAR are two times smaller (Figures 8e and 9e). As was the case for increased atmos-
pheric thermal forcing, these decadal changes due to decreased riverine organic nitrogen inputs only add 
a slight seasonal variability to the overall changes in the Chesapeake Bay surface carbonate system (Fig-
ures 6h, 7h, 8h, and 9h).
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Increased riverine TA and DIC input is the local-scale driver that has the greatest impact on Chesapeake 
Bay surface TA and DIC concentrations over the past 30 years. The analysis of long-term USGS data finds 
annual increasing trends in riverine TA and DIC concentrations that are similar to previous studies (Najjar 
et al., 2020; Raymond & Oh, 2009), and underscores clear seasonal patterns in both TA and DIC trends 
over the past three decades in the two largest tributaries of the Bay (i.e., the Susquehanna and the Potomac 
River). Relatively large increasing trends are found from July to December in the Susquehanna River, and 
from December to February in the Potomac River (Figure 2c). Given that the Susquehanna River accounts 
for more than 50% of the freshwater discharge entering the Bay, and the Potomac River fall line is far 
from the mainstem, decadal changes in surface TA and DIC are dominated by changes in the Susquehanna 
River. These decadal increases are greatest in the upper Bay with large seasonality (80–260 meq m−3 and 
80–240 mmol m−3 per 30 years for surface TA and DIC, respectively; Figures 6f and 7f), and decrease rapidly 
toward the middle and lower Bay. TA observations in the upper and middle Bay also show increases over 
the same time period (Herrmann et al., 2020) and in prior decades (Najjar et al., 2020). It is noteworthy that 
increases in riverine TA and DIC drive the increases in Chesapeake Bay surface TA and DIC over the past 
three decades (Figures 6h and 7h), yet the large seasonality in the increase in DIC in the mid- and lower Bay 
is a combination of the various drivers discussed above.

The 30-year increase in riverine TA and DIC also increases surface pH and ΩAR, especially in the upper Bay. 
TA concentrations in the Susquehanna River have been increasing at faster rates than DIC year-round, with 
the ratio between their decadal increases ranging from ∼1.2 in the summer to over 1.6 in the spring and 
winter. Therefore, in the upper Bay, the resulting increase in surface pH is lowest in the summer (<0.1 pH 
units per 30 years), and ranges from +0.1 to +0.3 pH units per 30 years in the spring. Because of the increase 
in surface 2

3CO  concentration, surface ΩAR has increased throughout the Bay with maximum values of 0.2 
per 30 years in the upper Bay. However, other drivers such as increased atmospheric CO2 counteract the in-
creases in pH and ΩAR in this region, resulting in a near zero change in pH (Figure 8h) and a small increase 
in ΩAR (Figure 9h; 0–0.06 per 30 years) in the summer when all drivers are considered together.

4.3.  Comparison With Previous Studies of Decadal Carbonate System Changes in Coastal 
Regions

Due to their proximity to land and their resulting sensitivity to changes in terrestrially derived inputs, the 
estuarine carbonate system is likely to change at much different rates than the open ocean carbonate sys-
tem. Takahashi et al. (2014) summarized the mean rate of change in the carbonate system at time-series 
stations (1980s–2010s) in the Pacific, Atlantic and subantarctic Southern Oceans and suggested that the 
mean acidification rate in the global ocean primarily results from the atmospheric CO2 increase, with other 
physical and biological processes having smaller impacts over this period. In contrast, in coastal environ-
ments local changes in water temperature, salinity and nutrients have been shown to directly effect changes 
in the carbonate system by modifying the chemical equilibrium, physical processes and biogeochemical 
rates (Carstensen & Duarte, 2019; Cai, Feely, et al., 2020, Cai, Xiu, et al., 2020).

Because of the variety of anthropogenic drivers impacting coastal environments, the resulting long-term 
changes in the carbonate system of coastal waters vary substantially across ecosystems. For example, along-
shore winds (Sydeman et al., 2014) and decadal climate variability (e.g., Pacific Decadal Oscillation) deter-
mine upwelling strength in the California Current Ecosystem, potentially leading to enhanced or mitigated 
signals of coastal acidification (Osborne et al., 2020). Salisbury and Jönsson (2018) analyzed long-term data 
and model products in the Gulf of Maine and similarly found that ocean circulation and rapid warming 
were substantially impacting coastal acidification via an event related to a retreat of the Labrador Current 
and a northward shift of the Gulf Stream (Saba et al., 2016). A combination of increased outgassing due 
to warming as well as increases in salinity and TA eventually caused slower pH reductions and increased 
ΩAR between 2004 and 2014. In contrast, local changes in river discharge and riverine TA-to-DIC ratios 
have had opposite impacts on the buffering capacity of two North Carolina estuarine systems, resulting in 
distinct decadal pH trends in the two systems (Van Dam & Wang, 2019). As highlighted in this study, the 
Chesapeake Bay is experiencing changes in coastal acidification due not only to increasing atmospheric CO2 
concentrations directly, but also due to changes in terrestrial inputs (less nitrogen but more TA and DIC). 
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In contrast, increased DIC inputs through the Bay mouth have had little impact on surface pH and ΩAR in 
the Bay.

Our results can also be compared with those of Shen et al. (2020) who examined spring and summer trends 
in Chesapeake Bay surface pH and ΩAR using a similar biogeochemical-circulation model. They found in-
creasing trends in the upper Bay and decreasing trends in the middle Bay. The pH trends identified here 
are similar in magnitude to those of Shen et al. (2020); however, our study found a faster decreasing rate of 
surface ΩAR in the middle Bay due to greater impacts from biological processes (e.g., nutrient reduction). 
Additionally, both studies suggest a smaller spatial extent of increasing pH trends in the upper Bay than 
are shown by summer WQMP pH observations. This may be related to the recovery of submerged aquatic 
vegetation beds in the shallow shoals near the Susquehanna River, due to past and ongoing nutrient man-
agement efforts in this region (Lefcheck et al., 2018). Recovery of these aquatic plants can result in decadal 
increases in the precipitation of carbonate minerals and daytime pH in the upper Bay, especially in the 
summer when photosynthesis rates are high (Su et al., 2020). Including the impacts of submerged aquatic 
vegetation and calcium carbonate cycling in our future modeling efforts may likely help improve the esti-
mation of the decadal carbonate system trends in the upper Bay.

It is more challenging to compare the results of this modeling study with existing observationally derived 
trends. For example, a change in measurement protocols around 1996 prohibits a comparison of pH data 
collected before and after this date (see Herrmann et al., 2020 for details). The analysis in the present study 
thus avoids using pH data from those early years, but there remains a possibility that the change in meth-
odology after 1996 contributed to artificially high pH values in the lower Chesapeake Bay in the analyses 
of Waldbusser et al.  (2011). Furthermore, the disagreement between the trends calculated from the two 
data sources (CONMON and WQMP) complicates assessment of trends directly calculated from these glass 
electrode pH data, which are inherently associated with large uncertainties. These historical pH data have 
been recently used to evaluate changes in air-sea CO2 exchange after rigorous treatment of errors (Herr-
mann et al., 2020). This highlights the ongoing need to obtain consistent high-quality pH measurements to 
assess robust trends in the carbonate system (Goldsmith et al., 2019; Sutton & Newton, 2020). Additional 
observations on benthic processes that can influence the surface carbonate system via vertical mixing, such 
as sulfate reduction in anoxic bottom waters and sediments as well as the resulting oxidation of HS−and 
NH4

+ outfluxes (Cai et al., 2017), are also critical for improving model parameterizations. Including such 
processes in our modeling system will enhance model realism, and will ultimately lead to better estimates 
of long-term trends in the Chesapeake Bay carbonate system.

5.  Summary and Conclusions
Over the past several decades, multiple anthropogenic drivers have caused a complex pattern of change in 
the carbonate system of coastal regions. The spatiotemporal variability of these changes is much greater 
than that observed in the open ocean, due to a combination of influences from the land, atmosphere and 
ocean. For example, this modeling study has demonstrated that in the freshest portion of the upper Ches-
apeake Bay, decadal change is primarily caused by seasonally varying increases in TA and DIC concentra-
tions from the Susquehanna River, with other drivers only contributing to decadal changes that are one to 
two orders of magnitude smaller. In contrast, throughout the rest of the Bay, globally elevated atmospheric 
CO2 concentrations and locally reduced riverine nutrient concentrations play critical and nearly equal roles 
in driving decadal trends in the surface carbonate system, while other drivers (e.g., increased atmospheric 
thermal forcing and oceanic DIC concentrations) play a less important role. Moreover, in this region the 
30-year decreases in pH and ΩAR show significant seasonal variability with the greatest changes generally 
aligning with the spring and summer shellfish production season.

Our results quantifying the relative importance of various drivers of coastal acidification provide critical 
information for management efforts aiming to control the risks of future acidification. Unlike changes in 
global drivers, such as increasing atmospheric temperature and CO2 concentrations, nutrient loading can 
be locally managed through the implementation of TMDLs. In fact, the reduction of nutrient inputs to 
the Chesapeake Bay has not only led to some success in controlling hypoxia in the Chesapeake Bay (Irby 
& Friedrichs, 2019; Ni et al., 2020), but is likely improving pH and ΩAR in the deep channel as well (Shen 
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et al., 2020). These improvements in bottom pH in the deep mainstem Bay are beyond the scope of this 
study, but should be investigated in more detail in the future. In contrast, the results of this study demon-
strate that nutrient reductions may be reducing pH and ΩAR at the surface, particularly during the most 
productive shellfish months (i.e., April to September). This may be pushing calcifying organisms to their 
physiological limits, with the resulting negative impacts strongly affecting early life history stages (Gobler 
& Talmage, 2013; Gobler et al., 2014; Talmage & Gobler, 2011; Waldbusser et al., 2013). Since the shellfish 
industry is critical to many local economies, such as that in the Chesapeake Bay watershed (Hudson, 2019), 
a reduction in shellfish production can have serious economic consequences.

In this study, decreases in surface pH and ΩAR associated with nutrient reductions highlight that this estu-
arine ecosystem is returning to a more natural condition, e.g., a condition when anthropogenic nutrient in-
put from the watershed was lower. However, increased atmospheric CO2 is simultaneously accelerating the 
rate of change in pH and ΩAR, exerting increased stress on estuarine calcifying organisms. The combined 
effects of these local- and global-scale drivers suggest that calcifying organisms in coastal surface waters are 
likely facing faster decreasing rates of pH and ΩAR than those in open ocean ecosystems. As nutrient reduc-
tion efforts to improve coastal water quality continue and expand in the future, controlling the emissions 
of anthropogenic CO2 globally becomes increasingly important for the shellfish industry and the ecosystem 
services it provides (Doney et al., 2020). In addition, continuing to expand high-quality carbonate system 
monitoring networks in these coastal systems is becoming ever more critical for accurately quantifying 
robust acidification trends, and for furthering our understanding of long-term change in coastal carbonate 
systems.

Data Availability Statement
Model outputs of this work are publicly available through W&M's Digital Archive at https://doi.
org/10.25773/6087-bj68. This is Virginia Institute of Marine Science contribution 4011.
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